Droits d'auteur protégés

mèche perceuse

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Test du coefficient de Spearman

Le coefficient de corrélation de Spearman constitue dans certaines situations une alternative intéressante au coefficient de corrélation de Pearson. D’ailleurs, on n’a parfois pas le choix (variables ordinales). Il y a bien le coefficient de Kendall mais, sauf dans les cas où l'on relève beaucoup d'ex-æquo, il semble moins performant que son confrère de Spearman...

Sa formule est particulièrement poétique :

coefficient

Le résultat de ce beau calcul est un nombre compris entre -1 (classements inverses) et 1 (classements identiques), la valeur zéro indiquant que nos deux classements n’ont vraiment rien à voir l’un avec l’autre. Le mécanisme du calcul est détaillé en page corrélation des rangs.

Le problème qui va nous tenir en haleine le long de cette page est de savoir à partir de quelles valeurs on va considérer qu’il y a dépendance ou indépendance. Je reconnais que le thème est pointu, mais il l’est toutefois moins que certains sujets qui ratissent un lectorat largement supérieur au mien (quelles chaussures a portées telle starlette à telle soirée, tel acteur avait un bouton sur la figure, etc.).

Bref, vous avez sans doute deviné qu’il faut procéder à un test (non paramétrique). Rien de très sorcier, mais c’est loin d’être le test le plus courant. D’ailleurs, la table de ce coefficient est assez rarement publiée. Elle se trouve par exemple ici :

http://rfv.insa-lyon.fr/~jolion/STAT/node147.html

http://www.cnam.fr/maths/IMG/pdf/Table_de_Spearman.pdf

Très simple à utiliser pour tout statisticien habitué à fréquenter ce genre de document, les valeurs dépendent du nombre d’observations et du niveau de confiance qu’on se donne.

Voici un tout petit extrait de cette table pour le seuil de confiance habituel de 95 %. Autour d’un effectif d’une centaine, il suffit d’un coefficient supérieur à 0,2 (ou inférieur à -0,2) pour considérer qu’il existe une liaison.

extrait de la table

À partir de dix observations, on peut approximer les valeurs de la table en utilisant la statistique suivante :

t

Cette statistique suit une loi de Student à n – 2 degrés de liberté (source : Statistiques avec Excel de J.-P. Georgin et M. Gouet, PUR 2005, p. 285).

Cependant, ces approximations ne sont utiles que si l’on programme le test. Il est d’ailleurs tout à fait possible de le réaliser sur tableur. C’est un peu long mais on a l'avantage de maîtriser certaines règles (traitement des ex-æquo, par exemple…).

Exemple

exemple

Hypothèse H0 : il n’y a pas de corrélation des rangs.
Hypothèse H1 : il existe une corrélation "monotone".

Premièrement, voyons la sortie de XLSTAT (Tests de corrélation, option Spearman) :

xlstat

Après observation du graphique, le rejet de H0 semblait de toute façon évident...

Deuxièmement, regardons la sortie du logiciel libre Tanagra (Nonparametric statistics, Spearman’s rho).

tanagra

On trouve le même coefficient. Un rhô dissemblable aurait pu s’expliquer par un traitement différent des ex-æquo.

 

capture du Statisticus

haut de page